SAGA LSにおける 先端イメージングの現状と将来計画

SAGA Light Source 米山明男

'19/3 SAGA LS 説明会@大坂 資料抜粋

Contents

- 1. 放射光と先端イメージング
- 2. 高空間分解能イメージング
- 3. 高時間分解能イメージング
- 4. 高密度分解能イメージング
- 5. トポグラフィー

1. 放射光と先端イメージング

放射光:大強度、平行、単色:レーザーに近い光

密度

2. 高空間分解能イメージング

	東谷にて	顕微鏡(光学系)	
	+1JC-A	走査型	結像型
光学構成	サンプル 高精細カメラ	ま 光 レンズ	 またので、 たいまでので、 そので、 そので、 そので、 そので、 そので、 そので、 そので、
空間分解能	~ミクロン	くサブミクロン	くサブミクロン
時間分解能	Ø	Δ	Ο
視野	数mm	数100ミクロン	<100ミクロン
その他	・高エネルギーX線 (20 keV以上)	•多物性観察 (点分析)	・ワンショット

2.1 SAGA-LSにおける高空間分解能イメージング

2.1 SAGA-LSにおける高空間分解能イメージング

	準単色マイクロCT	単色マイクロCT
空間分解能	2~3ミクロン (画素サイズ:0.65ミクロン (10倍レンズ))	2~3ミクロン (画素サイズ:0.65ミクロン (10倍レンズ))
観察視野	2倍レンズ : 6x5 mm 5倍レンズ : 3x2.5 mm 10倍レンズ : 1.5x1.25 mm	5倍レンズ : 2.5x2.5 mm 10倍レンズ : 1.25x1.25 mm
露光時間	∼100 ms	~5 s (GeDCMにより1 s予定)
3次元 計測時間	~100秒 (連続スキャン)	~2時間 (ステップスキャン)
エネルギー	12 ~ 25 keV	8∼30 keV
その他	サンプルによっては照射ダメージ あり (BL16XUダイレクト程度の強度)	

2.2 準単色放射光のスペクトル

2018秋 応用物理学会

2.3 準単色放射光を用いたマイクロCT一微化石一

0.2 mm

露光時間	100 MS
投影数	1000
計測時間	100 S
空間分解能	3ミクロン

2018秋 応用物理学会

2.4 準単色放射光を用いたマイクロCTー木材ー

2.5 単色放射光との比較

ビームライン	SP8 BL16XU
エネルギー	9 keV
露光時間/投影	5秒(デチューン1/10)
プロジェクション数	900 投影/360度
計測時間	1.5時間

ビームライン	SAGA LS BL07
エネルギー	∼15 keV
露光時間/投影	100 ms
プロジェクション数	1000 投影/360度
計測時間	100 秒

両者に大きな違いは見られない。

2.6 単色放射光を用いたマイクロCT一種一

内部高密度可視化像

種子内部の詳細な構造を可視化可能

2.7 3次元実体化

A. Yoneyama, et al., 5th International Paleontological Congress (2018).

3.1 高時間分解能(高速)イメージング

3.1 高時間分解能(高速)イメージング

	投影撮像	高速CT
空間分解能	10~20ミクロン (画素サイズ:3ミクロン (2倍レンズ))	10~20ミクロン (画素サイズ:3ミクロン (2倍レンズ))
観察視野	1倍レンズ:16x12 mm 2倍レンズ:8x6 mm	1倍レンズ : 16x12 mm 2倍レンズ : 8x6 mm
撮像時間	~ 0.1 ms	<20 s(3次元計測)
エネルギー	12 ~ 25 keV	12 ~ 25 keV
その他	サンプルによっては照射ダメージ あり (BL16XUダイレクト程度の強度)	サンプルによっては照射ダメージ あり (BL16XUダイレクト程度の強度)

-電解コンデンサ・

1 mm

2画素=13 ミクロン

40

位置[pixel]

20

60

80

100

2

0

露光時間	20 MS
投影数	1000
計測時間	20 S
空間分解能	15ミクロン

16 keV(Zr 0.08mm+Al 0.5 mm)

2018秋 応用物理学会

電解紙を高精細に可視化

ビームハードニングなし

28 keV(Cu 0.3mm+Al 0.5 mm)

4.1 高密度分解能(高感度)イメージング

有機材料・生体を高感度に観察可能

吸収イメージング (レントゲン) 位相イメージング

ラット心臓の測定例(同一被曝量)

試料提供:北里大学

4.3 SAGA-LSにおける位相イメージング

4.3 SAGA-LSにおける位相イメージング

	屈折コントラスト (Diffraction Enhanced Imaging)	タルボ干渉法
空間分解能	20~30ミクロン (画素サイズ:6.5ミクロン)	20~30ミクロン (画素サイズ:6.5ミクロン (1倍レンズ))
観察視野	16x12 mm(Zyla) 27x16 mm(VHR)	1倍レンズ:16x12 mm
投影像の 撮像時間	<10 s (密度ダイナミックレンジに依存)	<1 s
3次元 計測時間	~2時間 (連続スキャンにより短縮検討中)	<100秒 (連続スキャン)
エネルギー	12 ~ 35 keV	8 ∼ 30 keV
密度分解能	∼mg/cm ³	∼10 mg/cm ³

4.4 DEIを用いた観察例一発泡ポリマー

発泡ポリマー(絶縁材料)の測定例

4.5 DEIを用いた観察例-スポンジ-

スポンジ圧縮前後の3次元像

4.6 DEIを用いた観察例 – 野菜 –

インゲン豆

ブロッコリー

4.7 タルボ干渉法を用いた観察例

5. トポグラフィー

従来X線トポグラフィー装置

オペランドX線トポグラフィー装置 (2020年度以降)

5.1 SAGA-LSにおけるトポグラフィー

	従来のトポグラフィー (BL-09)	オペランドトポグラフィー (BL-07)
観察視野	白色:400x8 mm 単色:140x8 mm(6インチまで)	単色:15x8 mm
エネルギー	白色:中心エネルギー8 keV 単色:5~20 keV (単色⇔白色の切替は約1分)	8∼35 keV
検出器	X線フィルム フラットパネル (画素サイズ50 ミクロン) X線CCDイメージャー (画素サイズ7.5 ミクロン)	X線カメラ(Zyla) (画素サイズ6.5ミクロン) (19年度導入予定)
露光時間	白色:10mm ² チップ1枚あたり3分 (X線フィルム撮影,) 単色:10mm ² チップ1枚あたり10分 (X線フィルム撮影,)	~1秒
その他	高温下でのトポも可能 セクショントポによる3次元像可	

5.2 SAGA-LSにおけるトポグラフィー

SiC結晶内の転位イメージ

反射型の単色X線トポグラフの典型例。SiC 結晶の転位周囲の歪み場が見えている。観 察深さを変える、複数の回折を観察するな どで転位の特性を解析。

転位分布の例(4H-SiC -1-128回折)

MgOサブグレインの3次元構造

ビーム縦幅を0.1 mm以下に狭くし、白色光 でスライス画像をCCDイメージャーで撮影。 スキャンしながら多くのスライス画像を収 集し、ImageJ(画像ソフト)で3次元構築。

MgO 020回折の3次元化トポグラフ。 左: 平面像, 右: 3次元像

MgO結晶内のサブグレイン境界の重なりが 立体的に分かる。グレインEが表面側、Dが 裏面側に配置。

刃状転位(左)とらせん転位(右)の概念