

九州シンクロトロン光研究センター 県有ビームライン利用報告書

課題番号:1309106R

BL番号: BL07、BL11

(様式第5号)

Zr 合金酸化膜の成長にともなう添加元素化学状態変化 Change of chemical states of alloying elements in oxide layer of Zr-based alloys with oxide growth

> 坂本 寛¹、大塚 哲平²、橋爪 健一² Kan SAKAMOTO, Teppei OSUKA, Kenichi HASHIZUME

> 1:日本核燃料開発㈱、2:九州大学 1: Nippon Nuclear Fuel Development, 2: Kyushu University

1. 概要(注:結論を含めて下さい)

燃料被覆管の酸化膜成長にともなう添加元素の化学状態変化を調べるため、異なる 酸化膜厚中の添加元素の化学状態深さ方向分布を XAFS により調べた。本試験では酸化 膜厚が 3µm 以上の比較的厚い腐食遷移後の酸化膜の表面近傍での測定を行った。その 結果、酸化膜表面近傍では添加元素の多くが酸化した状態で存在することが分かった。

(English)

To examine the change of chemical state of alloying elements in the oxide layer of fuel claddings, the samples having different oxide thickness were subjected to the XAFS measurements. In the present study, the XAFS measurements were performed near surface of relatively thick oxide layers (over $3\mu m$). The measurements revealed that the alloying elements (Fe and Nb) were mainly in oxide state near the surface.

2.背景と目的

福島第一原子力発電所の事故を契機に原子力技術の根本的な安全性の向上が必要となった。特に福 島第一原子力発電所の事故では、炉心溶融にともない発生する水素(主な水素発生源は炉内のジルコ ニウム材、鉄系材、B₄C制御棒材)により起こった水素爆発が環境への放射性物質の放出、及び廃炉 作業の困難化を招いた。これらの根本的な解決には、通常運転時を含めて、水素耐性に優れた材料を 開発することが必須である。特に沸騰水型原子炉の炉心ではジルコニウム合金が炉心材料の主要構成 材となっており、このジルコニウム合金の水素耐性を向上する必要がある。

ジルコニウム合金の腐食酸化は時間に対して 1/3 乗則で比較的良く表すことができるが、一定の酸 化膜厚になると腐食速度が速くなる腐食遷移と呼ばれる現象が起こる。代表的なジルコニウム合金で は、この腐食遷移は概ね 2~3 µm の厚さに酸化膜が成長した時点で起こることが知られている。水素 吸収特性の観点からもこの腐食遷移は重要な意味を持ち、腐食遷移後には水素の吸収率(ジルコニウ ムの酸化にともない発生する水素がジルコニウムに吸収される割合)が大幅に増加する。そのため、 この腐食遷移にともなう水素吸収率の変化がどのような機構で起こっているのかを解き明かすこと が、水素耐性の高い被覆管材料の開発に結び付くものと期待される。

これらの事から、本研究では腐食遷移前後において水素吸収特性を律速している表面酸化膜の特性 変化を調べ、どのような機構で腐食遷移による水素吸収率の増加が起こるのかを明らかにすることを 目的とした。本試験では水素吸収特性に強い影響を与える酸化膜中の添加元素の状態変化を調べるた め、極低エネルギーでのスパッタリング(具体的には、高周波グロー放電分光分析装置(rf-GD0ES)) と表面敏感XAFS法(具体的には転換電子収量法(CEY))を組み合わせた、深さ方向分解能が非常に高 いXAFS測定を実施した。本試験では、腐食遷移直後の酸化膜を用いた表面近傍の添加元素の化学状態 を調べることを目的として、2種類のジルコニウム合金を用いた。

3. 実験内容(試料、実験方法、解析方法の説明)

試験には、沸騰水型原子炉で一般的に用いられているジルカロイ-2 (Zry-2)の水素吸収耐性を高めたGNF-Ziron (Zr-1.46Sn-0.26Fe-0.10Cr-0.05Ni)及び異なる添加元素を加えたZr合金であるZr-2.5Nbを用いた。表1に示すように、360℃の水中で190日(GZU55)、220日(2NU56)腐食した板状試験片を用いた。なお、図1に示すように両試験片とも腐食遷移直後の酸化膜が表面に形成された試料である。また、それぞれの試料を所定の深さまでrf-GDOESによりスパッタリングして研削したものには、試験片名末尾にGDを付与している。なお、参照試料としては酸化した鉄、クロム、ニオブの粉末及び未腐食GNF-Ziron、Zr-2.5Nbを用いた。

XAFS測定はSAGA-LSのBL11(GNZ-Ziron)、BL07(Zr-2.5Nb)で実施した。測定はCr-K、Fe-K、Nb-K 吸収端で実施した。図2にはCEYを用いた測定時の試料及び装置配置を示している。スパッタリング により研削した試料では、スパッタリング部(約7mm φ)を識別するためポリイミドデープによるマ スキングを行った。

測定されたXANESスペクトルの解析は、フリーソフト Athena 0.8.059 (Ifeffit は1.2.11c)で行った。

(a) GNF-Ziron		
	スパッタリング時間(s)	(予想)酸化膜厚さ(µm)
GZU55	0	3.9
GZU55GD1	50	3.7
GZU55GD2	200	3.2
Fe203	_	-
Cr203	_	-
GNF-Ziron	-	_

表1 XAFS 測定試験片の一覧

(b) Zr-2.5Nb		
	スパッタリング時間(s)	(予想)酸化膜厚さ(µm)
2NU56	0	4.1
2NU56GD1	200	3.3
2NU56GD2	300	2.9
Nb205	_	_
Zr-2.5Nb	_	_

マスク (ポリイミドテープ)

板状試験片設置例 (試料サイズが比較的小さな場合)

図 2

4. 実験結果と考察

規格化後の Fe-K、Nb-K 吸収端での XANES スペクトルをそれぞれ図 3、図 4 に示している。 GNF-Ziron を用いた測定では表面から約 1/5 程度までの深さまで測定を行ったが、酸化状態が支 配的な化学状態であり、表面近傍では添加元素である鉄は酸化された状態で存在することが明らかと なった。なお、図 1 に示した腐食試験結果から、同測定位置では腐食開始から数 10 日間で形成され た酸化膜であることが分かるが(Zr 合金の酸化は酸化膜を酸素が拡散し、金属/酸化膜界面で酸化膜 の成長が起こる)、酸化初期に形成された酸化膜は腐食や水素吸収に対する保護性が失われているも のと思われる。

Zr-2.5Nb を用いた測定では表面から約 1/4 程度までの深さまで測定を行ったが、酸化状態が支配的な化学状態であり、表面近傍では添加元素であるニオブは酸化された状態で存在することが明らかとなった。なお、GNF-Ziron と同様に、酸化初期に形成された酸化膜は腐食や水素吸収に対する保護性が失われているものと思われる。

図 3 規格化後の Fe-K 吸収端における XANES スペクトル (GZU55: GNF-Ziron、190d 腐食、酸化膜厚 3.9 - 3.2 µ m)

Energy of photon (eV)

図4 規格化後のNb-K吸収端における XANES スペクトル (2NU56: Zr-2.5Nb、220d 腐食、腐食後酸化膜厚 4.1-2.9 µm)

5. 今後の課題

本試験では表面から 1/5~1/4 程度の深さまでの表面近傍における添加元素の化学状態を調べた。同 深さまでは、腐食特性や拡散試験から腐食や水素吸収に対する保護性が失われた酸化膜であると予想 されるが、それら予想に合致した結果が得られた。今後は、より内部の酸化膜における化学状態を測 定し、腐食特性や水素吸収特性との関連を調べていく。

6. 参考文献

- K. Sakamoto, K. Une, M. Aomi, "Chemical state of alloying elements in oxide layer of Zr-based alloys", 1. Proceedings of 2010 LWR Fuel Performance/TopFuel/WRFPM Orlando, Florida, USA, September 26-29, 2010, Paper 0013, p101-106
- 2. K. Sakamoto, K. Une, M. Aomi, K. Hashizume, "Depth profile of chemical states of alloying elements in oxide layer of Zr-based alloys", Progress in Nuclear Energy, 57 (2012) 101-105 K. Sakamoto, K. Une, M. Aomi, K. Hashizume, "Oxidation behavior of niobium in oxide layer of
- 3. zirconium-niobium alloys", Proceedings of TopFuel 2012, Manchester, UK, Sept. 2-6, 2012, pp. 297-306.
- 4. K. Une, K. Sakamoto, J. Matsunaga, Y. Etoh, M. Aomi, I. Takagi, K. Sawada, H. Watanabe, "Controlling factors in hydrogen absorption of zirconium alloys", Proceedings of TopFuel 2012, Manchester, UK, Sept. 2-6, 2012, pp. 330-340.
- K. Une, K. Sakamoto, I. Takagi, K. Sawada, H. Watanabe, M. Aomi, "Deuterium diffusion in oxide layers 5. of Zr-2.5Nb alloy", J. Nucl. Mater., 439 (2013) 84-92
- K. Sakamoto, K. Une, Y. Kashiba, H. Watanabe, I. Takagi, M. Aomi, "Property change of oxide layer of 6. Zr-based alloys with oxide growth", Proceedings of LWRFPM2013, Charlotte, North Carolina, Sept. 15-19 (2013) pp. 873-878.

7. 論文発表・特許(注:本課題に関連するこれまでの代表的な成果)

従来までの取り組みについては参考文献にまとめられている。また、本課題の成果については、追加 試験データを取得後、速やかに論文化する予定である。

8. キーワード(注:試料及び実験方法を特定する用語を2~3) 燃料被覆管、XAFS

9. 研究成果公開について

 論文(査読付)発表の報告 (報告時期:2014年9月)