

九州シンクロトロン光研究センター 県有ビームライン利用報告書(PF協力利用)

課題番号	:	$1105041 \mathrm{PF}$
PF 受理番号	:	2011G086

(様式第2号)

新鉄系超伝導体 Ca(Fe_{1-x}Pt_x)_{2-d}As₂の放射光角度分解光電子分光

Angle-resolved photoemission spectroscopy study of the newly discovered iron-based superconductor Ca(Fe_{1-x}Pt_x)_{2-d}As₂

著者氏名

坪田幸士¹,吉田力矢¹,脇田高徳¹,長尾浩紀¹,吉村大介²,瀬戸山寛之², 岡島敏浩²,檀浦匡隆^{1,3},工藤一貴^{1,3},野原実^{1,3},平井正明^{1,3},村岡祐治^{1,3}, 横谷尚睦^{1,3}

English

K. Tsubota¹, R. Yoshida¹, T. Wakita¹, H. Nagao¹, D. Yoshimura², H. Setoyama², T. Okajima², M. Danura^{1,3}, K. Kudo^{1,3}, M. Nohara^{1,3}, M. Hirai^{1,3}, Y. Muraoka^{1,3}, and T. Yokoya^{1,3}

著者所属

¹岡山大学大学院自然科学研究科 ²佐賀県立九州シンクロトロン光研究センター ³JST-TRIP

English

¹The Graduate School of Natural Science and Technology, Okayama University ²Kyushu Synchrotron Light Research Center ³JST-TRIP

※長期利用課題は、実施課題名の末尾に期を表す(Ⅰ)、(Ⅱ)、(Ⅲ)を追記すること。

1. 概要

Ca(Fe_{1-x}Pt_x)_{2-d}As₂の関連物質である Ca(Fe_{1-x}Rh_x)₂As₂において報告されている Tetragonal(T)相-collapsed tetragonal(cT) 相転移に伴うフェルミ面形状の変化を観測する ために、放射光角度分解光電子分光を行った.T相および cT相において光エネルギー依 存角度分解光電子分光スペクトルを測定しフェルミ面形状の kz 依存性を観測した。そ の結果、T-cT 相転移に伴うフェルミ面形状の変化を観測することに成功した。

(English)

We have performed angle-resolved photoemission spectroscopy (ARPES) of $Ca(Fe_{1-x}Rh_x)_2As_2$ in order to investigate change of Fermi surface topology that is supposed to be induced by the tetragonal-to-collapsed tetragonal structure transition. From photon energy dependent ARPES at T phase and cT phase, we observed change of Fermi surface topology across the transition.

2. 背景と研究目的:

鉄系超伝導体は銅酸化物に次ぐ高い超伝導転移温度を示す[1]。その超伝導転移のメカニズムの解明のために現在でも活発な研究が行われている。結晶構造の変化に伴う超伝導性の発現/消失は超伝導メカニズムを考える上で重要な情報を与えると考えられる。122系の鉄系超伝導体の母物質 CaFe₂As₂は超伝導転移を示さない[2]。しかし、圧力印加により超伝導体となり、最高T_cは12Kまで 上昇する[3]。超伝導転移を示した後、さらに圧力を増加すると超伝導が突如消失する。結晶構造から見ると、超伝導-非超伝導の転移は Tetragonal(T)相から collapsed Tetragonal(cT)相への相転移に対応

する[4]。T-cT 相転移においては、c 軸が 6%近く減少し、a 軸が 2%近く増加する。結晶軸の変化は電 子構造の変化をもたらす。理論的には、電子構造の次元性が二次元的から三次元的へと変化すること が予測されている[5]。電子構造の次元性の低下はフェルミ面形状のネスティングの傾向を増加させ る。鉄系超伝導体においては、フェルミ面間のネスティングが超伝導の発現と密接に関係していると 考えられている。そのため、T-cT 相転移による電子構造の次元性の変化の観測を行うことで、鉄系 超伝導の超伝導転移のメカニズムに電子構造の次元性が関与しているかどうかを検証できると期待 される。しかし、CaFe₂As₂は高圧下においてのみ cT 相転移を示すので、実験的な検証は難しく、直 接的にフェルミ面形状の変化を観測した例はなかった。

今回測定を行った Ca(Fe_{1-x}Rh_x)₂As₂ [5]は、Rh をドープす ることにより、低温において Orthorhombic(O)相から T 相、 更には cT 相へと変化する (図 1)。バルク超伝導は T 相で のみ観測され

ている。この変化は、CaFe₂As₂に圧力を加えた時と似た変 化であり、Rh 置換が正の化学圧力効果を与えていること を示す。このことは、常圧下においても温度を変化させる ことによって cT 相転移を観測することが可能となったこ とを意味する。

本研究では、T-cT構造相転移に伴うフェルミ面形状の変 化を直接観測することを目的として、Ca(Fe_{1-x}Rh_x)₂As₂の放 射光角度分解光電子分光を行った。超伝導転移を示すT相 と、示さない cT相のフェルミ面形状の変化を比べること によって、超伝導転移の起源にネスティングが関与してい るかを示すことができると期待される。

図1. Ca(Fe_{1-x}Rh_x)₂As₂の相図[6]

3. 実験内容(試料、実験方法の説明)

測定試料はCa(Fe_{1-x}Rh_x)₂As₂(x=3.4%)の単結晶試料を用いた。この試料は、温度50K付近でT-cT相転移を示す。清浄試料表面は超高真空下において劈開で得た。

角度分解光電子分光は九州シンクロトロン光研究センター(SAGA-LS)県有ビームラインBL 10を 用いた。入射光の偏光は円偏光、エネルギーはhv=90-200eVとした。測定時の全エネルギー分解能は 70-100meVに設定した。試料温度は20K(cT相)および200K(T相)である。

4.実験結果と考察

図 2,3 はそれぞれ x=3.4%の試料の T 相、cT 相におけるフェルミ準位近傍(-15meV< E_B <15meV)の光電子強度マップである。光電子強度の規格化は光強度とスキャン回数で行っている。白線で描かれている枠は格子定数から求めた Ca(Fe_{1-x}Rh_x)₂As₂のブリルアンゾーンである。光電子強度マッピにおいて、色の濃い部分がフェルミ面に対応する。黒点は、 E_F 近傍の運動量分布関数(Momentum

Distribution Curve, MDC)におけるピーク位置であり、バンドがフェルミ準位を横切る位置(フェルミ 運動量 k_F)またはバンドがフェルミ準位極近傍に存在する位置に対応する。T相と cT 相の強度分布 の傾向を比較すると、T相では強度分布の k_z 依存性が少ないように見えるのに対して、cT 相におい ては強度分布に kz 依存性があり、「点近傍の強度が低く Z 点近傍で強度が強くなっているように見 える。強度分布の違いは、MDC 解析の結果に顕著な違いとなって現れる。T 相では MDC に観測さ れる構造は Z-Γ-Z線の両脇に存在し k_z 依存性はほとんどないように見える。その一方で cT 相では、 MDC に観測される構造の位置は Z-Γ-Z線付近に位置するとともに、Z 点近傍ではその両側にも構造 が存在する。外側の構造が顕著な k_z 依存性を持つように見える。これらの結果は、T 相においては二 次元なフェルミ面、cT 相においては 3 次元的なフェルミ面が存在することを意味しており、超伝導 の消失と電子構造の次元性の変化が関与していることを示唆している。

5. 今後の課題:

今回の実験で、T-cT 相転移においてフェルミ面の次元性の変化を示唆するデータを得ることに成 功した。しかしながら、測定時間の関係でS/Nが低く、k_z方向の測定点間隔が粗いデータとなってし まった。今後は k_z分散において、より詳細な実験を行い転移前後の電子構造変化をより明瞭に観測 するとともに、面内マッピングも行うことにより3次元運動量空間において具体的にフェルミ面の形 状変化、より具体的にはネスティングの度合いがどうのように変化するかを観測したいと考えてい る。

6. 論文発表状況·特許状況

Ca(Fe_{1-x}Rh_x)₂As₂の角度分解光電子分光 坪田幸士,吉田力矢,脇田高徳,長尾浩紀,吉村大介,瀬戸山寛之,岡島敏浩,檀浦匡隆,工藤一貴, 野原実,平井正明,村岡祐治,横谷尚睦 日本物理学会 2011年秋季大会 富山大学 平成 23 年 9 月 21-24 日

7. 参考文献

- 1) Y. Kamihara et al., J. Am. Chem. Soc. 130, 3296 (2008).
- 2) N. Ni et al., Phys. Rev. B 78, 014523 (2008).
- 3) T. Park et al., J. Phys.: Condes. Matter 20, 322204 (2008).
- 4) A. Kreyssig et al., Phys. Rev. B 78, 184517 (2008).
- 5) D. A. Tompsett, G.G. Lonzarich., Physica B 405, 2440-2443 (2010).
- 6) M. Danura et al., J. Phys. Soc. Jpn. 80, 103701 (2011).

8. キーワード(試料及び実験方法を特定する用語を2~3)

·角度分解光電子分光

試料に光を照射し、光電効果により飛び出した光電子の運動エネルギーと放出方向を観測することに より固体内電子の結合エネルギーおよび運動量を測定する実験手法。フェルミ面形状や、バンド分散 を観測することが出来る。

• $Ca(Fe_{1-x}Rh_x)_2As_2$

122 系の鉄系超伝導物質。Rhのドープ量によって反強磁性相が抑制され、超伝導転移や、cT相転移 をおこす物質である。