

九州シンクロトロン光研究センター 県有ビームライン利用報告書

課題番号:2308041P

|| BL番号: BL11

(様式第5号)

In-situ XAFS による原子精度ニッケルクラスター内の 活性化エネルギー削減サイトの構造解明 Structural Studies on the Specific Site Reducing Activation Energy in Atomically Precise Nickel Clusters by In-situ XAFS

> 森合 達也, 今岡 享稔 Tatsuya Moriai, Takane Imaoka

東京工業大学 科学技術創成研究院

Institute of Innovative Research, Tokyo Institute of Technology

- ※1 先端創生利用(長期タイプ)課題は、実施課題名の末尾に期を表す(I)、(Ⅱ)、(Ⅲ)を追記 してください。
- ※2 利用情報の公開が必要な課題は、本利用報告書とは別に利用年度終了後2年以内に研究成果公 開 { 論文(査読付)の発表又は研究センターの研究成果公報で公表 } が必要です(トライアル 利用を除く)。
- ※3 実験に参加された機関を全てご記載ください。
- ※4 共著者には実験参加者をご記載ください(各実験参加機関より1人以上)。

1. 概要(注:結論を含めて下さい)

我々の研究グループでは、極微小サイズのニッケルクラスターが温室効果ガス変換反応において高い触媒活性を示すことを発見しており、さらにそれらの反応性がクラスターの構成原子数(核数)に大きく依存することも見出している。本課題研究では、大気酸化された12・60核Niクラスター(Ni₁₂・Ni₆₀)に対してH₂で化学還元を行い、還元完了後のNiクラスターの構造をEXAFSにより解析した。その結果、それぞれのクラスターが核数に応じて異なる幾何構造を持つことが明らかとなった。さらに、触媒として用いた後の28核Niクラスター(Ni₂₈)についても同様にH₂還元と構造解析を行なったところ、触媒反応前後においてクラスター特有の粒子構造を保っていることが示唆された。

(English)

Our research group has discovered that ultrasmall nickel clusters have the high catalytic performance in greenhouse gas conversion reaction, and their reactivity depends on their atomicity. In this work, air-oxidized nickel clusters with the atomicity of 12 and 60 (Ni₁₂ and Ni₆₀) were chemically reduced by H₂, and their geometry structures were analyzed using EXAFS. As the result, it was indicated that their clusters have the unique structure depending on the atomicity. Furthermore, the structure of Ni₂₈ after the catalytic reaction was analyzed, suggesting that the specific structure to a cluster was retained even throughout catalytic reaction.

2. 背景と目的

金属クラスター(粒径約1nm)は、核数(原子数)が1つ異なるだけで全く異なる物 性や反応性を示すことが近年わかってきており、様々な研究分野で注目を集めている物 質群である。最近、我々の研究により、Niクラスターの核数を最適化することで表面に 特有な活性サイトを形成させ、これが触媒反応における活性化エネルギーを著しく低下 させることを見出している。本研究では、CH4のドライリフォーミング反応に対する Ni 触媒の触媒活性における、バルクーナノ粒子ークラスター間のサイズ依存性に加えて、 クラスター内の核数依存性について調査している。これまでに我々は、STEM 観察・XAFS 解析・DFT 計算により、Ni₂₈が CH4を活性化させる特有なサイトを粒子表面に形成して いることを示唆している。そこで本研究課題では、他の核数クラスター(Ni₁₂、Ni₆₀)、 さらに触媒に用いた後のNi₂₈についても同様にXAFSで構造解析を行ない、それぞれの クラスターの粒子構造や表面サイトが触媒活性にどう影響しているかを明らかにする。

3.実験内容(試料、実験方法、解析方法の説明)

我々の研究グループで開発した独自の高分子「デンドリマー」を鋳型とした合成法¹⁾ により、Ni₁₂、Ni₂₈、Ni₆₀を合成した(図1)。それぞれのクラスターを約2wt%でシリカナ ノ粒子(Aerosil 300)に担持したサンプルについて、XAFS測定を行った。これらのクラ スターは大気下で空気酸化されていることが予想されるため、まずはH₂による還元処理 を行い、その途中経過と還元後のサンプルのXAFSを測定した。SAGA-LS所有の透過法 XAFS測定用加熱炉に測定用サンプルを導入し、ガス流通下で透過法にてin-situ XAFSを 測定した。H₂は希釈系を用いた。具体的な手順は以下に記す。

- ① サンプルをセルに入れ、セル内をH₂/He(20%)で置換。
- ② H₂/He(20%)流通下で温度を室温から500℃程度まで昇温 (昇温レートは+5℃/min)。
- ③ 昇温中はQuick scan(300秒/scan)でNi-K edge(XANES・EXAFS)を繰返し測定。
- ④ 500℃で温度を保ったままクラスターの還元を行いながらQuick scan(300秒/scan)で Ni-K edge(XANES・EXAFS)を繰返し測定。
- ⑤ クラスターの還元が完了しXANESの変化が収束した時点で流通ガスをH₂/HeからHe に切り替え、室温まで自然放冷。
- 室温になったらXANES・EXAFSを再度測定。

※いずれのガスも合計流速は50sccmとした。ただしH2/He(20%)はマスフローコントロー ラを用いてH2(10sccm)とHe(40sccm)に設定した。Ni28はCH4のドライリフォーミング反応 に使用後(当所属機関で別途実施)のものを測定する。

図1. デンドリマー鋳型合成法によるNiクラスター生成

4. 実験結果と考察

いずれのクラスターにおいても、H2流通下 500℃ で 30 min 還元処理を行ったところで XANES スペ クトルの変化が収束したことから還元完了を確認 することができた。これらのサンプルを He 流通下 で室温まで冷却した後、Ni foil (bulk)を基準物質と して EXAFS 領域について解析した。それぞれのカ ーブフィッティング結果について、Ni の物質サイ ズをバルクからナノ粒子 (NPs)、さらにクラスタ ーへと小さくすることで、Ni-Ni 配位数(CN)が 減少することが明らかとなった(図 2,表 1)。こ こで、ナノ粒子は文献値 1)を参考にしており、クラ スターの粒径(d)は実際に走査型透過電子顕微鏡 で測定した値である。このサイズ依存性が見られ た理由としては、物質サイズが小さくなると構造 内部に存在する原子に対して粒子表面に露出する 原子の割合が大きくなることが関係していると考 えられる。すなわち、この結果はクラスター領域 という極微小サイズにおいても、サイズを制御し

たクラスター合成を達成していることを示している。また、クラスター内の Ni-Ni 結合 長がバルクやナノ粒子と比べてわずかに小さくなっていることが示された。このことか ら、クラスターは粒子サイズが小さい故にバルクに見られるような結晶構造とは異なる 粒子構造を有していることが考えられる。

また、CH4のドライリフォーミング反応に触媒として用いた後の Ni₂₈についても同様 に解析を行った。結果として、いずれの EXAFS パラメータにおいても反応前後で大き な変化は見られなかった。このことから、触媒として用いた後でも Ni₂₈はオリジナルの 粒子構造を保持していることが予想される。

表 1. Ni-Ni 結合における EXAFS カーブフィッティングパラメータ d (nm) CN R (Å) dE (eV) DW (Å) R-factor 2.49 Ni bulk 12 Ni NPs²⁾ 3.0 ± 0.8 8.9 ± 0.2 2.48 ± 0.01 -2.4 ± 0.3 0.07 ± 0.03 Ni60 1.3 ± 0.2 7.38 ± 1.49 2.47 ± 0.01 -1.55 ± 2.48 0.090 ± 0.019 1.9 Ni₂₈ 1.1 ± 0.2 6.86 ± 1.40 2.47 ± 0.01 -4.55 ± 2.65 0.063 ± 0.024 3.6 0.9 ± 0.2 5.92±1.23 2.47±0.01 -5.81±2.56 0.089±0.019 5.2 Ni_{12}

5. 今後の課題

現在、Ni₂₈については XAFS 測定で得られたパラメータ(配位数・結合距離)と第一 原理計算(DFT)により算出した粒子構造とで整合性が取れている。今後は、Ni₁₂や Ni₆₀ についても同様に粒子構造を計算により推定し、今回得られたパラメータと照らし合わ せることで、触媒活性との関係性について議論する。また、Niに留まらず、他の元素で も同様にクラスターの粒子構造について XAFS から議論する。

6. 参考文献

1) T. Tsukamoto et al., Nature Commun. 2018, 9, 3873.

2) H. Kitagawa et al., Appl. Catal. B 2014, 478, 66-70.

- 7. 論文発表・特許(注:本課題に関連するこれまでの代表的な成果)
 - 1) K. Sonobe et al., Chem. Eur. J. 2021, 27, 8452-8456.
 - 2) T. Moriai et al., 2023, submitted. (今回の内容を含む)

8. キーワード(注:試料及び実験方法を特定する用語を2~3) ニッケル・クラスター・in-situ XAFS

9.研究成果公開について(注:※2に記載した研究成果の公開について①と②のうち該当しない方を消してください。また、論文(査読付)発表と研究センターへの報告、または研究成果公報への原稿提出時期を記入してください。提出期限は利用年度終了後2年以内です。例えば2018年度 実施課題であれば、2020年度末(2021年3月31日)となります。) 長期タイプ課題は、ご利用の最終期の利用報告書にご記入ください。

② 研究成果公報の原稿提出 (報告時期: 2025 年 3月)