

九州シンクロトロン光研究センター 県有ビームライン利用報告書

課題番号:2110099S

BL番号:09

(様式第5号)

X線トポグラフィーによるワイドギャップ半導体の結晶欠陥評価 II Characterization of crystallographic defects in widegap semiconductor materials by X-ray topography

児島一聪 ¹⁾、八木邦明 ²⁾ Kazutoshi Kojima¹⁾,), Kuniaki Yagi

1)産業技術総合研究所 先進パワーエレクトロニクス研究センター

Advanced Power Electronics Research Center, National Institute of Advanced Industrial Science and Technology

> ²⁾株式会社 サイコックス SICOXS CORPORATION

- ※1 先端創生利用(長期タイプ)課題は、実施課題名の末尾に期を表す(I)、(Ⅱ)、(Ⅲ)を追記 してください。
- ※2 利用情報の公開が必要な課題は、本利用報告書とは別に利用年度終了後2年以内に研究成果公 開 { 論文(査読付)の発表又は研究センターの研究成果公報で公表 } が必要です(トライアル 利用を除く)。
- ※3 実験に参加された機関を全てご記載ください。
- ※4 共著者には実験参加者をご記載ください(各実験参加機関より1人以上)。

1. 概要(注:結論を含めて下さい)

10kV 超の超高耐圧 SiC デバイス向け 4H-SiC 厚膜エピウエハにおける BPD の基板から エピ層への伝搬挙動を調べるために X 線の侵入長が 100 µ mを超える回折条件を用いて 反射 X 線トポグラフを行い、転位の伝搬の様子が確認可能かどうかを調べた。その結果、 エピ/基板界面で刃状転位に転換した BPD はエピ成長中に再度 BPD に再転換することは なく、またエピ成長の途中で BPD を発生させることは無いものと考えられる。また、低 入射かつ高侵入長の条件では貫通転位のスポットがオフ方向に裾を引くことが判った。

(English)

Propagation of basal plane dislocations (BPDs) from 4H-SiC substrates into epitaxial layers for over 10kV blocking voltage 4H-SiC devices were investigated by using X-ray topographic images with high x-ray penetration depth conditions up to 100 μ m. As the results it was found that BPDs converted to threading edge dislocations (TEDs) at an epilayer/substrate interface did not convert back to BPDs during epitaxial growth and new BPDs does not generate during epitaxial growth. In addition, it was found that large white spots related with threading screw dislocations changed the shape along step flow direction.

2. 背景と目的

電力エネルギー変換を高効率に行うためにワイドギャップ半導体材料の一つとして、4H型シリコンカーバイド(4H-SiC)を用いたパワーデバイスの実用化が進んでいる。4H-SiC 結晶成長技術の向上により結晶欠陥は低減されつつあるものの、依然として一定程度の結晶欠陥が存在しており、デバイスの特性不良や信頼性低下の要因となることが懸念されており普及拡大への枷となっている。一方、Si に比べてウエハが高コストであることも普及拡大に対する大きな課題となっている。そのため、結晶欠陥の観察をバルク結晶成長、エピタキシャル成長、デバイス開発等の研究者と連携しながら進め、欠陥の性状、発生原因、デバイス性能への影響等の諸問題を解決していく必要と共に SiC のウエハコスト低減に向けた新たな取り組みも求められている。

特に送配電系への導入が期待される SiC-IGBT は低欠陥且つ低濃度の 150 μ mを超える厚膜エピ層 が必要となる。また、当該デバイスはバイポーラ動作をするためにエピ層中の貫通基底面転位 (BPD) に起因する順方向劣化を抑制することが大きな課題となっている。今日 150 μ mの厚膜エピにおける 貫通 BPD 密度は貫通刃状転位への転換技術により大きく低減できることが可能であるがその転換が エピ/基板界面で起きているのか、あるいはエピ層中で転換が起きているのかを非破壊で評価するこ とは容易ではない。

そこで本報告では 10kV 超の超高耐圧 SiC デバイス向け 4H-SiC 厚膜エピウエハにおける BPD の基板 からエピ層への伝搬挙動を調べるために X 線の侵入長が 100 μ mを超える回折条件を用いて反射 X 線 トポグラフを行い、転位の伝搬の様子が確認可能かどうかを調べたので報告する。

3. 実験内容(試料、実験方法、解析方法の説明)

試料は4インチn型4H-SiC基板上に産総研内でH2-C3H8-SiH4ガス系を持つホットウォール型CVD装置を用いてn型エピ膜を100μm成長させたものを用いた。

反射X線トポグラフはBL-9のビームラインにおいてベルグバレット配置で実施した。回折面は

(-1-12-12) と (11-212) の2つの面を使用した。(-1-12-12)面では入射エネルギー11keV、入射角約21°、2 θ = 100°で侵入長=70 μ mの条件を用いた。一方(11-212)面では入射エネルギー12keV、入射角約12.6°、2 θ = 80°で侵入長=100 μ mの条件を用いた。

4.実験結果と考察

図1に(-1-1-2-12)面の反射X線トポグラフのイメージ像を示す。黒矢印で示す貫通螺旋転位(大きな白点)と白矢印でしめす貫通刃状転位(小さな白点)のみが観察されており、BPDの存在を示す線状のイメージは観察されていない。

図2に同様に(11-212)面の反射X線トポグラフのイメージ像を示す。図1に比べて黒矢印で示すような貫通螺旋転位を示すスポットが不鮮明になるとともにそのスポットからオフ方向に白く尾を引くようなイメージが観察される。本測定での侵入長は100μm程度でありかつ図1に比べるとビームの入射角が浅いために深さ方向の情報とあいまって貫通転位のイメージが崩れたものと考えられ、何らかの貫通転位に関する深さ方向の情報を含んでいるものと考えられる。

図 1, 図 2 いずれにおいても BPD の存在を示す線状のイメージは観察されておらず、今回の試料 においてはエピ/基板界面で刃状転位に転換した BPD はエピ成長中に再度 BPD に再転換することは なく、またエピ成長の途中で BPD を発生させることは無いものと考えられる。

図1 (-1-1-2-12)面の反射X線トポグラフのイメ 図2 (11-212)面の反射X線トポグラフのイメー ージ像 ジ像

5. 今後の課題

入射角が浅くかつ侵入長が長くなる条件で観察した反射 X線トポグラフは図2に示したように貫通螺旋転位がオフ方向に白く尾を引く イメージが観察されたが、別の試料では図3 に示す様に白いスポットで示す貫通螺旋転位 からオフ方向に黒い尾を引くイメージが観察 されており、試料によってはイメージの反転 はあるもののいずれにしても本撮影条件では 貫通螺旋転位から尾を引くようなイメージが 観察されると考えられ、この現象がどういう 原因に起因するのかを調べていく予定であ る。

6. 参考文献

図3 図2とは異なる試料の(11-212)面の反射X線 トポグラフのイメージ像

7. 論文発表・特許(注:本課題に関連するこれまでの代表的な成果)

8. キーワード(注:試料及び実験方法を特定する用語を2~3) 4H-SiC、CVD、 X線トポグラフ、侵入長、貫通螺旋転位、貫通刃状転位、基底面転位

9.研究成果公開について(注:※2に記載した研究成果の公開について①と②のうち該当しない方を消してください。また、論文(査読付)発表と研究センターへの報告、または研究成果公報への原稿提出時期を記入してください。提出期限は利用年度終了後2年以内です。例えば2018年度実施課題であれば、2020年度末(2021年3月31日)となります。

長期タイプ課題は、ご利用の最終期の利用報告書にご記入ください。

論文(査読付)発表の報告
研究成果公報の原稿提出

(報告時期:2024年 3月) (提出時期: 年 月)