パワー半導体応用を目指した CVD ダイヤモンドエピ膜の シンクロトロン X 線トポグラフィー観察

嘉数 誠，桝谷聡士

佐賀大学大学院工学系研究科

ダイヤモンドは禁制帯幅5．47eVのワイドギャップ半導体であり，次世代のパワー半導体として期待されている。結晶中の格子欠陥はデバイス特性に影響が与えることが予想 されるが，格子欠陥の構造や生成機構は明らかではない。そのため我々はSAGA－LSでシ ンクロトロン光を用いたX線トポグラフィーで，高温高圧合成（HPHT）ダイヤモンド基板 とその上にCVD成長したホモエピ膜の両者を観察，比較し，欠陥の発生機構を調べた。観察試料は（001）HPHT単結晶上にマイクロ波プラズマCVDで $50 \mu \mathrm{~m}$ ホモエピ成長した試料である。X線トポグラフィーは表面に敏感な反射Bragg配置で行った。［1］
転位が観察された箇所を○で示している。基板の転位は，ホモエピ膜でも引き継がれ ているが，エピ膜で発生している転位も観察される。なお，エピ膜の転位を $\mathbf{g} \cdot \mathbf{b}$ 積の消滅則により解析した結果，主に混合転位であることがわかった。

本研究は九州シンクロトロン光研究センターの支援により行われました。
［1］S．Masuya，M．Kasu，Jpn．J．Appl．Phys． 55 （2016） 04030.

Fig． 1 X－ray topography images of（a）HPHT substrate and（b）homoepitaxial film at the same position

パワー半導体応用を目指したCVDダイヤモンドエピ膜のシンクロトロンX線トポグラフィー钼察

嘉数 誠，桝谷聡士
佐賀大学大学院工学系研究科電気電子工学専攻，グリーンエレクトロニクス研究所
Email：kasu＠cc．saga－u．ac．jp

1．はじめに

\pm	m	$\stackrel{\square}{ }$	5umb	碞昜	\cdots	n		m
on	32	\cdots	non	2	$*$	\because	\％	
\cdots	3	2	nom	22	\cdots	\cdots	${ }^{\circ}$	
＊	\ldots	4	vom	10	ns	is	，	

ダイヤモンド半導体は，バンドギャップ（Eg）が最も高く，高効率電力性能を示すバリが性能指数でも，高周波電力性能を示すジョンクン性能指数でも，半導体の中で最も高い値を示し，高いパワー半導体デバイス性能が予想されま す［1］。

現在， SiC は大電力制御に，GaNは携帯基地局への応用を目指していますが，ダイヤモンド半導体は，放送地上局，通信衛星，レーダーなどで，進行波管 （TWT）に代わる，高周波電力用のパワー半導体デバ イスとして期待されます［1］。

実験は，九州シンクロトロン光研究センターのビームライ ンBL09のX線トポグラフィー装置を用いて行いました。シ ンクロトロン光をSi（111）からなる分光器で単色化した高輝度で高コヒーレントのX線を光源とし，試料を反射（Bragg）配置に設置し，回折像をX線フィルムで撮像しました［2，3］。

2．HPHTダイヤ基板のX線トポグラフィー観察


```
學媿にマイクロ波プラスマCVD法により
ホまモエビ成興
```



```
    *It年 Soum
```


実験では，まず高温高圧合成（HPHT）ダイヤ モンド単結晶のX線トポ観察を行い，つぎに CVDにより成長したホモエピタキシャル膜のX線トポ観察を行い，両者の像を比較することで，転位や積層欠陥などの欠陥をHPHT結晶に由来するものとCVDエピ膜に由来するものに区別することができました［2，3］。

まず，（001）面のHPHTダイヤモンド基板のX線トポグ ラフィー像を取りました。中心付近の種結晶から表面 に垂直な［001］方向に延伸する転位と4つの等価な ［11－2］方向に延伸する転位を観察しました［2，3］。

HPHT基板の枟位は主に湛合告位
HPHT基板の同じ場所を，異なる回折ベクトル（ g ）で撮像した像を比較します。黄色の転位はg＝－404ではコントラストが消滅してお り，赤の転位はg＝0－44で消滅しています。x線回折では，b $\mathrm{g}=0$ の場合に，コントラストが消滅するため，その現象を用いた解析 を行うことで，前者の転位はバーガーズベクトル，$b=a / 2[101]$ で，後者は $\mathrm{b}=\mathrm{a} / 2[011$ ］であることがわかりました。また両者の転位と も延伸方向が 001$]$ なので，混合転位であることもわかりました。

3．CVDダイヤエビ膜のX線トポグラフィー観察

つぎに同じHPHT基板上にエピタキシャル成長した CVDホモエピタキシャル膜のX線トポグラフィーを観察しました［3］。X線の試料結晶への侵入長は約 $25 \mu \mathrm{~m}$ で，エピタキシャル膜厚の $50 \mu \mathrm{~m}$ より薄いことか ら，この像はCVDホモエピタキシャル膜からの回折像 ということが判断できます。

CVDホモエピタキシャル膜のX線トポグラフィーでは，黄色で示す成長丘の転位が， $\mathrm{g}=-202$ でコントラスト が消滅しました。このことから $\mathrm{b}=\mathrm{a} / 2[101]$ と同定でき ました。また延伸方向が［001］なので，混合転位と分類できました。また，1 つの成長丘中の転位がペアに なっているという特徴も明らかになりました。

同一箇所のHPHT基板とエピ膜のX線トポ像を比較しまし た。基板の黄色で示した転位は，エピ膜でも見られ，エピ膜に引き継がれていることがわかりました。赤は基板には観察されず，エピ膜のみで観察されるので，基板・エピ膜界面で発生し，エビ膜中を延伸する転位であることがわか りました［4］。

4．結論

－HPHT基板結晶とCVDホモエビ後の結晶をシンクロトロンX線トポグラフィーて観察し，比較することでCVDホモエピの欠陌を調がました。
$\checkmark \mathrm{b}=\mathrm{g}$ 消滅則を用いた解析からCVDホモエピ中の転位は，主に $\mathrm{b}=\mathrm{a} / 2[101]$ の混合転位であることを明らかにしました。
\checkmark エピ表面に生成した成長丘には，2本のペアの転位が生成する傾向があることがわかりました。
\checkmark CVDエピ膜の転位は，基板結晶から引き継がれているものと基板・エピ膜界面で生成し，エピ膜中を延伸する転位があることがわかりました。

References

［1］M，Kasu，＂Diamond field－effect transistors for RF power electronics：Novel NO_{2} hole doping and low－temperature deposited $\mathrm{Al}_{2} \mathrm{O}_{3}$ passivation＂，Jpn．J．Appl．Phys．56， 01 AA 01 （2017）．［2］M．Kasu，et al．，＂Synchrotron X－ray topography of dislocations in high－pressure high－temperature－grown single－crystal diamond with low dislocation density＂，Appl．Phys，Express 7， 125501 （2014）．［3］M．Kasu，＂Diamond epitaxy：basics and applications＂，Progress in Crystal Growth and Characterization of Materials 62， 317 （2016）．［4］S．Masuya，et al．，＂Determination of the type of stacking faults in single－crystal high－purity diamond with a low dislocation density of $<50 \mathrm{~cm}^{-2}$ by synchrotron X－ray topography＂，Jpn．J，Appl．Phys．55， 040303 （2016）．

謝辞

貴重な助言を頂いた石地耕太朗博士（SAGA－LS）に感謝いたします。本実験は九州シンクロトロン光研究センター（SAGA－LS）で行われました。本研究は科研費（15H03977）の助成により行われました。

