

九州シンクロトロン光研究センター 県有ビームライン利用報告書

課題番号:1604015R

BL番号: BL12

(様式第5号)

軟 X 線吸収分光法によるナトリウムイオン二次電池正極材料の 電子状態観測

Electronic states of cathode materials for sodium ion secondary batteries by soft X-ray absorption spectroscopy

丹羽秀治¹⁻³、天羽薫¹、小林航¹⁻³、守友浩¹⁻³ Hideharu Niwa¹⁻³, Kaoru Amaha¹, Wataru Kobayashi¹⁻³, Yutaka Moritomo¹⁻³

> ¹筑波大数理物質科学研究科、²筑波大数理物質系 ³筑波大数理物質融合科学センター

¹Grad. Sch. Pure and Appl. Sci., Univ. Tsukuba, ²Fac. Pure and Appl. Sco., Univ. Tsukuba, ³CiRfSE, Univ. Tsukuba

- ※1 先端創生利用(長期タイプ)課題は、実施課題名の末尾に期を表す(I)、(Ⅱ)、(Ⅲ)を追記 してください。
- ※2 利用情報の公開が必要な課題は、本利用報告書とは別に利用年度終了後2年以内に研究成果公 開 { 論文(査読付)の発表又は研究センターの研究成果公報で公表 } が必要です(トライアル ユースを除く)。
- ※3 実験に参加された機関を全てご記載ください。
- ※4 共著者には実験参加者をご記載ください(各実験参加機関より1人以上)。

1. 概要(注:結論を含めて下さい)

最も典型的なナトリウムイオン電池の正極材料である層状遷移金属酸化物 Na_xMO₂ と、配位高分子錯体のプルシャンブルー類似体の軟 X 線吸収分光測定を行った。その結 果、層状酸化物の O K 吸収端 XAS やプルシャンブルー類似体薄膜試料の Co L 吸収端 XAS において、ナトリウム組成 x の違いによる電子状態変化が明瞭に観察された。

(English)

Electronic states of cathode materials for sodium ion secondary batteries such as layered transition metal oxides and cobalt and manganese Prussian blue analogues were investigated by soft X-ray absorption spectroscopy. O K-edge XAS of layered oxides and Co L-edge XAS of Prussian blue analogues clearly showed the oxidation states change due to sodium intercalation/deintercalation.

2. 背景と目的

ナトリウムイオン二次電池(SIB)は情報産業だけでなく自動車産業にとっても重要なエネルギーデバイスである。SIB は太陽光発電や風力発電などの出力の安定しない再生可能エネルギーの蓄電デバイスとしても応用が期待されているまた、現在、SIB の容量、電位、電流密度、寿命等を向上させるために世界中で研究が行われている。しかしながら科学的な論理に基づいた二次電池材料の研究開発は少ないのが現状である。

層状遷移金属酸化物である Na_xMO₂(M = Cr, Mn, Fe, Co)は最も典型的なナトリウムイオン電池の正極材料である。この物質は MO₂ 層とそれに挟まれた Na⁺イオンの層からなる。Na⁺イオンは充電過程において正極材料から脱離し、放電過程においては正極材料に挿入される。ナトリウム脱離によって四価の遷移金属サイト(M⁴⁺)が生成するため、局所的な歪が生じていると考えられる。そこで、軟 X線吸収分光法(XAS)により遷移金属の電子状態を観測し、同じ結晶構造で価数の異なる遷移金属サイトについて考察を行う。

また我々はこれまでに、配位高分子錯体のプルシャンブルー類似体(PBA: Na_xM[Fe(CN)₆])_vに着目

し、ナトリウムイオン電池の正極活物質として研究を行ってきた[1]。PBA は遷移金属がシアノ基に 架橋され、ジャングルジム状のネットワークを形成し、その空隙は Na⁺を可逆的に収容することが出 来る。そこで PBA も同様に、ナトリウム脱離にともなう遷移金属 M の価数変化に伴う電子状態変化 を XAS で調べ、電池現象の本質的な理解を目標とする。

3. 実験内容(試料、実験方法、解析方法の説明)

測定に用いた試料は、層状酸化物粉末と、ITO基板上に成長させたPBA薄膜である。層状酸化物粉末 はO3型NaCoO₂、P2型Na_xCoO₂、O3型NaCoO₂の、O3型NaCoO₂の4種類である。PBA薄膜はCo²⁺とCo³⁺ の割合が異なる7枚の試料Na_xCo[Fe(CN)₆]_{0:9}・2.9H₂O (PBC)、及びMn²⁺とMn³⁺の割合が異なる7枚の試 料Na_xMn[Fe(CN)₆]_{0:8}・3.5H₂O (PBM)を用意した[1]。試料の詳細を表1に示した。

試料名	Х	Co(II)	Co(III)
PBC0	As-grown	10	0
PBC1	1.6	10	0
PBC2	1.4	8	2
PBC3	1.1	5	5
PBC4	0.8	2	8
PBC5	0.3	0	10
PBC6	0	0	10

表1. PBC及びPBMの試料名、ナトリウム組成x及び含有遷移金属の割合.

試料名	Х	Mn(II)	Mn(III)
PBM0	As-grown	10	0
PBM1	1.3	10	0
PBM2	0.9	10	0
PBM3	0.45	9	1
PBM4	0.25	5	5
PBM5	0.1	2	8
PBM6	0	0	10

粉末試料に関しては、試料ホルダーに銀テープで保持して真空中で飛散しないようにした。ITOガ ラス基板上に堆積したPBA薄膜試料は、ガラス基板をカーボンテープで試料ホルダーに貼り付けた。 試料に含まれる元素に応じて、OK端、MnL端、FeL端、CoL端のXAS測定を室温、超高真空中、 入射角45度配置で行った。試料電流を測定する全電子収量法とMCPによる蛍光収量法の両方で測定を 行ったが、測定時間の都合上、蛍光収量法測定では十分なS/Nを得ることが出来なかった。

4. 実験結果と考察

まず、層状酸化物の結果について述べる。O3-NaMnO₂及び P2-Na_xMnO₂の Mn L 吸収端 XAS スペクトルを図1に示す。ナトリウム組成 x の違いにより、電子状態に明瞭な差があることが観察された。 OK吸収端スペクトルにおいても Mn 3d とO1sの混成に由来するピークの強度比が異なっており、 ナトリウム組成が変化した時に Mn と配位子である酸素のいずれの電子状態にも影響があることが 明らかになった。一方、O3-NaCoO₂及び P2-Na_xCoO₂の CoL 吸収端 XAS スペクトルは、P2型で高酸 化状態に由来すると考えられるピークシフトと幅の広がりが僅かに見られたものの、Mn と比較する とO3型と P2型で電子状態の差は顕著ではなかった。しかしながら、図2に示すようにO3-NaCoO₂ 及び P2-Na_xCoO₂のOK 吸収端 XAS スペクトルでは 530 eV 付近の Co 3d とO1sの混成に由来するピ ーク[2]に明瞭な差が観察され、ナトリウム組成変化に伴う配位子の役割の重要性が示された。

図 2. O3-NaCoO₂ 及び P2-Na_xCoO₂のOK 吸収端 XAS スペクトル.

PBM 及び PBC 薄膜では Fe L 吸収端 XAS 及び Mn 又は Co L 吸収端 XAS を各試料について測定した。PBM 及び PBC 薄膜の Fe L 吸収端 XAS スペクトルから、ナトリウム組成 x の変化に応じて Fe の価数が 2 価から 3 価に明瞭に変化していることが観察された。PBM 薄膜の Mn L 吸収端 XAS スペクトルは、ナトリウム組成 x が変わっても Mn^{2+} のスペクトルの形状に類似しており、 Mn^{3+} への変化 が明確には観察されなかった。図 3 に PBC 薄膜の Co L 吸収端 XAS スペクトルを示す。PBM とは対照的に、PBC 薄膜では Co^{2+} から Co^{3+} への価数変化が顕著に観察された。

以上のように、層状酸化物のOK吸収端XASやPBC薄膜試料のCoL吸収端XASにおいて、ナトリウム組成xの違いによる電子状態変化が明瞭に観察されたことから、XASでSIB材料に含まれる元素の価数を調べるという手法は、固溶体電極、多価アニオン、配位高分子、などの他の電極材料に対しても応用可能であると考えられる。

5. 今後の課題

PBM 薄膜の Mn L 吸収端 XAS でスペクトルに大きな違いが見られなかった原因を充放電特性、Mn K 端 XAFS、X 線回折結果などと比較することで今後明らかにしていきたい。また、今回は表面敏感 な全電子収量法の測定であるので、表面に起因する化学種が強調されている可能性が否定出来ない。 そこで、バルク敏感な蛍光収量法の測定も今後は行いたい。

6. 参考文献

[1] M. Takachi, T. Matsuda, Y. Moritomo, Redox reactions in prussian blue analogue films with fast Na+ intercalation, Jpn. J. Appl. Phys. 52 (2013) 2–6.

[2] W.B. Wu, D.J. Huang, J. Okamoto, A. Tanaka, H.J. Lin, F.C. Chou, et al., Orbital symmetry and electron correlation in NaxCoO2, Phys. Rev. Lett. 94 (2005) 3–6.

7. 論文発表・特許(注:本課題に関連するこれまでの代表的な成果) 特に無し。

8. キーワード(注:試料及び実験方法を特定する用語を2~3)

・軟 X 線吸収分光

・ナトリウムイオン電池

9. 研究成果公開について(注:※2に記載した研究成果の公開について①と②のうち該当しない方を消してください。また、論文(査読付)発表と研究センターへの報告、または研究成果公報への原稿提出時期を記入してください(2016年度実施課題は2018年度末が期限となります)。 長期タイプ課題は、ご利用の最終期の利用報告書にご記入ください。

① 論文(査読付)発表の報告

(報告時期:2017年12月)