

九州シンクロトロン光研究センター 県有ビームライン利用報告書

課題番号:1012002AS

(様式第4号)

実施課題名 セメント鉱物に固定したヨウ素酸の2価鉄イオンによ る還元と放出挙動に関する研究(Ⅲ)

Study on reduction by ferrous ion and release behavior of iodate fixed in cement minerals (III)

著者氏名 出光一哉

Kazuya Idemitsu

著者所属 九州大学 kyushu University

1. 概要

セメント固化体中への放射性ヨウ素の固定化を研究対象としている。今期の測定では、2価鉄共存還元条件下でベントナイト粘土中に拡散浸入したヨウ素の化学組成を XANES 測定により調べた。

(English)

We are studying on fixation of radioactive iodine in mortar waste. In this measurement, we investigate chemical composition of iodine diffused into bentonite under a reducing condition with ferrous ion by XANES, L(III) and K of I.

2. 背景と研究目的:

放射性廃棄物の中でヨウ素廃棄物については、主要核種である I-129 の半減期が 1570 万年と長く、その固定と廃棄体の安定性が強く求められている。廃棄体の製造法の中でもセメント固化法は製作の容易性と安価であることから期待されている。セメント内ではヨウ素をヨウ素酸としてセメント構成鉱物に取り込むことが考えられている。ヨウ素酸を固定できるセメント構成鉱物としては、エトリンガイトやモノサルフェートがあり、本来は硫酸イオンが占める場所をヨウ素酸(IO₃)が置き換わっているものと考えられている。これまでの研究で、セメント内のヨウ素の XAFS 測定を行うことで、ヨウ素の存在形態測定が可能であること、ヨウ素酸カルシウムとヨウ化カルシウムスペクトルを用いてヨウ素の化学組成の半定量分析を行えることを確認した。

第 I 期の研究では、ヨウ素イオンとヨウ素酸イオンの配合を変えた標準試料を作成し、組成比の測定 精度の向上と、ベントナイト内に拡散移行したヨウ素の化学組成比の測定を行なった。

第Ⅱ期の研究では、電気化学的にベントナイト粘土中に2価の鉄イオンを注入し、還元条件下でヨウ 素酸を含むエトリンガイトとベントナイトを接触させ、ヨウ素の移行挙動と化学形の関係を調べること を目的とした。

第Ⅲ期の研究では、ヨウ素酸を含有したエトリンガイト試料とベントナイト試料を接触させ、2価鉄 イオンにより還元状態において、それぞれの試料中のヨウ素の化学形、および移行挙動について確認を 行うことを目的とした。また、BL7を用い、ヨウ素のK端での測定も行った。

3. 実験内容(試料、実験方法の説明)

- (1) 測定には、BL11、BL7を用いた。
- (2) 蛍光法により試料をペレット化したもののLm-edge (BL11)、K-edge (BL7) XANES測定を行った。
- (3) ヨウ素のLm-edgeでの蛍光法による測定においては、カルシウムの蛍光スペクトルとの重なりが問題となる(1)。特に本研究の試料では、カルシウムの影響の無い試料(ヨウ化カリウム、ヨウ素酸カリウムを用いた測定も実施し標準とした(表1)。

(4) ベントナイト試料とエトリンガイト試料を下図のように接触させ、エトリンガイト側から2価鉄イ オンを電気化学的に注入し、通電後試料を1mm厚でスライスしたものをXANES測定試料とした。(第 Ⅱ期)

XANES測定箇所

図1 試料の配置

左からヨウ素酸を含むエトリンガイト(厚さ1mm)、右側はベントナイト粘土(厚さ9mm) 2価鉄イオンはエトリンガイト側から電気化学的に注入(電位+300mVvsAg/AgC1、通電期間と拡散期間 をパラメータとした)

(5) ベントナイト試料とエトリンガイト試料の厚さをそれぞれ5mmとして、(4)と同様(通電期間は5日)の試験を実施した。(第Ⅲ期)

物質名(化学式)**1	形態(外観)**2	数・量及びサイズ**3	特性**4と対策**5	使用目的**6
エトリンガイト	ビニール封入	約 180mg	無害	測定
{Ca6[A1(OH) ₆ •		$(\phi 10 \text{mmx1mm})$		
$24H_20]^{6+}2(I0_3^{-})4(0H^{-})$		10枚		
ヨウ素酸カルシウム	ビニール封入	約 180mg	無害	測定
$Ca(IO_3)_2$		1個		
ヨウ化カリウム KIO₃	ビニール封入	約 180mg	無害	測定
		1個		
ヨウ素酸カリウム KIO3	ビニール封入	約 180mg	無害	測定
		1個		
ヨウ素イオン溶液	ビニール封入	約 180mg	無害	測定
ヨウ素酸イオン溶液 IO ₃ -	ビニール封入	約 180mg	無害	測定
ベントナイト試料	ビニール封入	約 110mg	無害	測定
エトリンガイト+2価鉄	ビニール封入	約 180mg	無害	測定
$\{Ca6[A1(OH)_{6}$.		$(\phi 10 \text{mmx1mm})$		
$24H_20]^{6+}$ 2 ($I0_3^{-}$) 4 (OH^{-})		10枚		
$+ Fe^{2+}$				
ベントナイト試料+2価	ビニール封入	約 110mg	無害	測定
鉄				

表1 測定試料(標準含む)

4.実験結果と考察

ヨウ素とカルシウムの蛍光X線は下表に示すように非常に近いエネルギーを持っている(2)。

表1 蛍光X線エネルギー

Ca $K_{\alpha 1}$ 3.69168 $K_{\alpha 2}$ 3.68809 $K_{\beta 1}$ 4.0127 I $L_{\alpha 1}$ 3.93765

特に、Ca K_{β1} と I L_{α1}、L_{α2}(*) はスペクトルを分離できず、測定結果の信頼性を低下させる怖れがあった。しかしながら、BL11の蛍光測定検出器のエネルギー分解能はこれらをはっきりと分離することができた。I L_{β2}も Ca の影響を受けないと考えられるが、本実験では入射散乱光が検出されたので、I L_{α1}、L_{α2}(*)を測定に用いた。

【標準試料測定例 KI/KIO3 溶液試料】(第Ⅰ期、第Ⅱ期)

第Ⅰ期および第Ⅱ期において、溶液試料によるスペクトルの確認を行なった。

図2左図にそれぞれの純溶液の結果を示す。KIO3 溶液のスペクトルの特徴はプリエッジピーク(4562eV 付近)が明確であり第1のピーク(4574eV 付近)よりも第2のピーク(4590eV 付近)の方が大きい。 一方、KI 溶液のスペクトルの特徴はプリエッジピーク(4562eV 付近)が小さく第1のピーク(4572eV 付近)よりも第2のピーク(4595eV 付近)の方が小さい。右図にはそれぞれの溶液の割合を変化させた 試料の測定結果を示す。

図2 KI 溶液、KIO3 溶液の XANES スペクトル 左:それぞれの純物質溶液、右:溶液の混在試料

【通電7日、拡散3日試料】(第Ⅱ期)

図1の配置の試料に7日間通電し2価鉄を注入し、3日間の拡散期間後、試料を1mm間隔でスライス した。図3にエトリンガイト試料(1スライス目)とベントナイト試料(3スライス目)の XANES ス ペクトルを示す。この条件ではエトリンガイト中のヨウ素酸イオンはほとんどヨウ素イオンになってい る。

(左) エトリンガイト(通電7日) (右) ベントナイト試料(3スライス目、深さ2mm相当)

【通電期間依存性試験】(第Ⅱ期)

上記の条件(通電7日)ではエトリンガイト試料中のほとんどのヨウ素酸イオンがヨウ素イオンに還 元されていたので、通電期間(供給する2価鉄イオン量)をパラメータとして試験を行なった。通電期 間は1、3、5日とした。その後の拡散期間は3日で統一している。図4から6にそれぞれの条件での エトリンガイト試料とベントナイト試料のXANESスペクトルを示す。エトリンガイト試料のXANES スペクトルから通電期間とともにヨウ素酸イオンの割合が減少する様子が判る。これは試料に供給され る2価鉄イオンの量が通電時間とともに増加し、それに応じてヨウ素酸イオンがヨウ素イオンに還元さ れていることを示している。一方、ベントナイト試料のXANESスペクトルは通電時間によらずほぼヨ ウ素イオン 100%であることを示している。つまり、ベントナイト中へ拡散移行しているヨウ素は還元さ れたヨウ素イオンが大部分を占めている。過去の試験(3)において、ベントナイト中のヨウ素の拡散係 数はヨウ素イオンの方がヨウ素酸イオンより 1.9 倍大きく、またベントナイト中に浸入できる最大濃度 もヨウ素イオンの方が数倍大きいことが判っている。今回得られたスペクトルでは、エトリンガイト 料には還元されていないヨウ素酸が残っているにもかかわらず、ベントナイト中を移行しているヨウ素 のほとんどが還元されたヨウ素イオンであること、ヨウ素酸イオンはほとんど含まれていないことから、 エトリンガイト中で還元されていないヨウ素酸イオンはエトリンガイト中に保持された状態であるが、 ヨウ素イオンに還元されると移行し易くなることが判る。

(左) エトリンガイト (右) ベントナイト試料 (3スライス目、深さ 2mm 相当)

酸イオン/ヨリ素イオン比率と供給した2個鉄イオン重の相関を調へた 鉄イオン供給量に応じて還元が起きていることが判った。

【エトリンガイト/ベントナイト界面周辺のヨウ素の化学形(通電5日)】(第Ⅲ期) 試験方法(5)に示すように、ヨウ素酸を含むエトリンガイト試料とベントナイト試料(それぞれ厚 さ5mm、直径10mm)中へ、電気化学的に2価鉄イオンを注入し(5日間)、それぞれの試料中のヨウ素 の化学形と割合を測定した。測定した試料の位置を図10に、それらの試料のXANESスペクトルを図11 に示す。図10に示すように、2価鉄イオンはエトリンガイト試料を通り抜け、ベントナイト試料部分で 濃集している。これは、エトリンガイト内には鉄イオンが存在できる空間が少なく留まることができな いのに対し、ベントナイト中では結晶層間のナトリウムイオンと鉄イオンが置換することができるため である。鉄イオンを多く含むベントナイト試料の色の観察から、鉄は2価の状態であると推察される。 この試料から図10に示す採取番号(⑤から⑨)の試料スライスを採取し、XANES測定を行った。図11 に測定したそれぞれの試料スライスの XANES スペクトルを示す。エトリンガイト試料スライスのスペクトルはヨウ素酸が多く含まれることを示しているのに対し、ベントナイト試料スライスのスペクトルはヨウ素イオンが主な化学形であることを示している。これは、エトリンガイト内に固定されていたヨウ素酸が2価鉄イオンにより還元され、ヨウ素イオンとしてベントナイト中に拡散移行したものと考えられる。

④CaI₂ペレット
⑤CaIO₃ペレット
⑥AFt-IO₃⁻電気化学的試験後試料

①から⑤の試料の測定結果を図 12 に示す。K 吸収端における XAFS 測定においても、IO₃ と I の判別は 可能であることが確認できた。また、K 吸収端における測定の場合他の元素からの妨害は無いため、L₃ 吸収端における測定よりも SDD の ROI 設定が容易であった。

図 12 のスペクトルから、AFt-IO₃⁻標準試料における XAFS スペクトルは、CaIO₃や KIO₃溶液の結果と比 べると第1ピークが高いことが確認できた。

オンはヨウ素イオンに還元され、還元されたヨウ素イオンはベントナイト中で移動し易くなることが判った。

また、ベントナイト試料中に拡散浸入したヨウ素酸イオンがベントナイト中のカルシウムと結合し、 析出物を作ることを確認した。

BL07を用いたヨウ素のK端の測定の結果、ヨウ素酸とヨウ素イオンを充分識別可能であった。

6. 論文発表状況·特許状況

「XANES によるセメント中のヨウ素の測定」 出光一哉、秋山大輔、有馬立身、稲垣八穂広、春口佳子、山下雄生、金子昌章 原子力学会 2010 年春の年会 I43 (2010 年 3 月 28 日、茨城大学)

「還元環境下でのエトリンガイト中のヨウ素の化学形変化測定」 松木喜彦、出光一哉、稲垣八穂広、有馬立身、秋山大輔、春口佳子、山下雄生、三倉通孝、金子昌章 原子力学会 2010 年秋の大会 D43 (2010 年 9 月 17 日、北海道大学)

"Migration behavior of iodine in compacted bentonite", Y. Matsuki, K. Idemitsu, D. Akiyama, Y. Inagaki, T. Arima, Proceedings of Global 2011, Dec.11-14, Makuhari Chiba, Japan.

7. 参考文献

- 1. Y. S. Shimamoto, Y. Takahashi, Superiority of K-edge XANES over L_{III}-edge XANES in Speciation of Iodine in Natural Soils, ANALYTICAL SCIENCES, vol. 24 (2008) pp.405-409.
- 2. 太田俊明編, X線吸収分光法 -XAFS とその応用ー, アイピーシー, 2002.
- 3. Y. Matsuki, K. Idemitsu, D. Akiyama, Y. Inagaki, T. Arima, Migration behavior of iodine in compacted

bentonite, Proceedings of Global 2011, Dec.11-14, Makuhari Chiba, Japan.

8. キーワード(試料及び実験方法を特定する用語を2~3)

・ 蛍光 X 線

物質をX線で照射したときに原子の内殻軌道の電子を励起放出し、この空準位に高い準位の電子が移る ときに放射される特性X線のこと。

・エトリンガイト

セメント構成鉱物の一つ。針状結晶。硫酸イオン等陰イオンを構造内に取り込んでいる。

・モノサルフェイト

セメント構成鉱物の一つ。板状結晶。硫酸イオン等陰イオンを層構造の間に取り込んでいる。

・ベントナイト

アルミノ珪酸塩粘土鉱物。放射性廃棄物処分において、緩衝材あるいは充填材として用いられる。