

九州シンクロトロン光研究センター 県有ビームライン利用報告書(PF協力利用)

(様式第2号)

課題番号:1105038PF PF受理番号:2009G615

複合金属酸化物の選択酸化機能に関する in-situ 光電子分光 In-situ photoelectron spectroscopy of mixed metal oxides for selective oxidation

> 宮崎隆文 Takafumi Miyazaki

愛媛大学大学院理工学研究科 Graduate School of Science and Engineering, Ehime University

1. 概要

メタン酸化カップリング(OCM)反応に活性を有する AB_2O_4 型複合酸化物の電子状態を調べるために、 $ZnLa_2O_4$ と $CaFe_2O_4$ の光電子スペクトルを測定した。その結果、OCM 反応の無い $CaFe_2O_4$ には 1 種類の酸素種が存在しているのに対し、OCM活性を有する $ZnLa_2O_4$ には LiNiO₂ と類似した 2 つの酸素種が形成されていることなどが明らかになった。

(English)

Ultraviolet photoelectron spectra (UPS) and X-ray photoelectron spectra (XPS) of AB_2O_4 type complex oxides were measured in order to examine a relationship between the electronic structure of $CaFe_2O_4$ and $ZnLa_2O_4$ and their C_2 -selectivities for an oxidative coupling of methane (OCM). Inactive $CaFe_2O_4$ for OCM reaction was observed a peak of XPS O1s, while $ZnLa_2O_4$ were appeared two O1s peaks like that active LiNiO₂ for the OCM reaction.

2. 背景と研究目的:

我々は天然ガスの主成分であるメタンを化学的に有効利用するための触媒探索を行ってきた。 今回の放射光利用実験では、メタン酸化カップリング(OCM)反応に活性をもつ AB₂0₄型複合酸化 物の触媒機能解析を目的とした。この酸化物ではAサイトとBサイトの金属元素の組み合わせに より C₂ 収率が増減するという報告がある。そこで、AB₂0₄型複合酸化物として CaFe₂0₄、ZnLa₂0₄、 ZnFe₂0₄、NiFe₂0₄を調製して表面電子構造を調べることを目的とした。今回はこれらの試料の紫外 光電子スペクトル (UPS) および X 線光電子スペクトル (XPS)を測定して、内殻準位および価電 子帯上部の電子構造から選択酸化機能と表面電子構造の基礎データを収集する。XPS では構成元 素である Fe2p, Zn2p, Ni2p, O1s, C1s の内殻準位、UPS では 40eV の光励起による価電子帯上部 の詳細な電子構造を調べる。 3. 実験内容(試料、実験方法の説明)

AB₂O₄ 型複合酸化物の光電子スペクトルを測定して表面電子構造を調べるため、所属研究室において4種類の試料(CaFe₂O₄、ZnLa₂O₄、ZnFe₂O₄、NiFe₂O₄)を調製した。図1にはこれらの試料の XRD パターンを、図2には OCM 反応に対する C₂選択性と C₂収率を示す。今回の利用実験では当初の 4~5 個の試料を測定する予定であったが、配分された2日間のマシンタイムでは試料の加熱処理やスペクトル測定に予想以上の時間が必要であったために2個の試料しか測定することは出来なかった。

図1. AB₂O₄型試料のXRDパターン

表 1. OCM 反応に対する, C₂ 選択性と

C ₂ 収率の比較

試料	C₂選択性	C₂ 収率
CaFe ₂ O ₄	0	0
$ZnLa_2O_4$	42	12
$ZnFe_2O_4$	13	4
NiFe ₂ O ₄	14	4

調製した試料の XRD パターンには、目的生成物とは異なる、帰属不能な不純物と思われる回折ピー クも観測されている。しかし、表 1 に示すように、OCM 活性には差異が認められ、C₂ 選択性から見ると ZnLa₂O₄ > NiFe₂O₄ ≈ ZnFe₂O₄ > CaFe₂O₄ の順であった。そこで、今回のマシンタイムでは CaFe₂O₄ と ZnLa₂O₄ の光電子スペクトルの測定実験を行った。測定実験では表面清浄化のために 600℃の加熱およ び OCM 反応活性温度である 750℃の加熱処理を行った後に、光電子スペクトルの測定を行った。加熱 処理は光電子スペクトル測定用チャンバーに隣接するプレチャンバーにて行った。加熱処理では試料か らの脱ガスに応じて真空度が上昇したことから極端な真空度の悪化を避けることに留意した。その結 果、室温~750℃まで昇温して、再び室温付近まで戻すためにおよそ 2~3 時間を要した。

4. 実験結果と考察

今回のマシンタイムでは CaFe₂0₄ と ZnLa₂0₄の UPS および XPS の測定実験を行った。CaFe₂0₄ と ZnLa₂0₄の 600°Cおよび 750°Cに加熱した後の 01s スペクトルを図 3~6 に示す。600°Cで熱処理された CaFe₂0₄ では酸素の内殻準位である 01sXPS はブロードな 1 本として観測された。750°Cの熱処理 により高エネルギー側に僅かにピーク幅は増大したが、新たなピークの出現などは観測されなかった。一方、600°Cで加熱処理した ZnLa₂0₄には 2 本の 01s ピークが認められ、750°Cに加熱処理した znLa₂0₄には 2 本の 01s ピーク強度が相対的に増大して いる事が分かる。

これらの結果は、OCM反応に対する高い選択性のLiNiO₂と同様にOCM活性が比較的に高いZnLa₂O₄ では 2 つの 01s ピークが観測されており、特に、高結合エネルギー側の格子酸素種の生成が OCM 活性に関連していることが推察される。

5. 今後の課題:

今回の BL10 での光電子スペクトルの測定実験では、シンクロトロン放射光の強度と VG Scienta R4000WAL の光電子エネルギー分析器の感度は触媒表面の電子状態を調べるのに十分であった ことから研究実験計画の遂行する上で十分な研究成果が期待できる。今後の研究では、光電子ス ペクトルの結合エネルギーの基準とその補正や試料表面の温度においてより正確な測定方法の検 討が必要である。

6. 論文発表状況·特許状況

H24年放射光学会(第25回日本放射光学会・放射光科学合同シンポジウム、佐賀)での研究発表を予定している。

7. 参考文献

- Ultraviolet Photoemission Study of Lithium Nickel Oxide: A Contact of Valence Band Structure and Selective Oxidation, T. Miyazaki, D. Yoshimura, and K. Okudaira Applied Catalysis A, 338 (2008) 79-82.
- On the Behavior of the Selective Oxidation by LiNiO₂: Oxidative Coupling of Methane, T.Miyazaki, K. Michitani, M. Ookawa, and T. Yamaguchi
 Research of Chemical Intermediates, 28 (2002) 479-484.
- Photoemission Spectra of LiNiO₂ Catalyst for Oxidative Coupling of Methane,
 T. Miyazaki, M. Aoki, and O. Takayasu
 Japan Journal of Applied Physics, 38 (1999) 51-54.
- 8. キーワード(試料及び実験方法を特定する用語を2~3)
- OCM 反応(Oxidative Coupling of Methana)酸化的な雰囲気でのメタンのカップリング反応により、2 分子のメタンからエタンやエチレンを直接合成する反応。
- 光電子分光法(Photoelectron Spectroscopy)光電効果によって物質の表面から飛び出した光電子のエネルギー分析により物質の組成や電子状態を調べる手法
- 3. 金属複合酸化物(Mixed metal Oxide)2 種類以上の金属元素が結晶格子を形成する酸化物